星期二, 3月 26, 2024

Theory & Systems for Weak Supervision by Christopher Re @MLSYS 2020


Snorkel Github
Practical Weak Supervision: Doing More With Less Data

這陣子為了 computer vision 還有 weakly supervised learning 的事情頭痛。要發 paper 需要 label 動輒破千的影像資料讓我快燒壞腦袋。

這應該是這陣子聽到最重要的 talk。重點在於 Snorkel 這個 project。相較於 supervised learning 要專家直接標資料,Snorkel 將問題從 data labeling 轉變成如何找出夠多的 weak labeling function,然後在目前我還沒搞懂的 labeling model 或投票機制作用之下,weakly supervised model 或 gold + silver label 的方法訓練出來的成果不會比專家爆肝差太多,但專家爆肝可能要一年才有辦法幾千份,labeling function 快的話只要幾天。

只是目前看到的 tutorial 都還在用 NLP 說明,還不知道怎麼做 weakly supervised object segmentation or detection。不過有 Oreilly 有出書整理,應該會比直接啃論文快些。

全文連結

0 意見: